EXAMPLE 7.10	Concrete Wall to Footing (Shear) Connection
Given	Maximum transverse shear load on bottom of wall = 1,050 plf (due to soil) Dead load on wall = 1,704 plf Yield strength of reinforcement = 60,000 psi Wall thickness = 8 inches Assume μ = 0.6 for concrete placed against hardened concrete not intentionally roughened. f'_c = 3,000 psi
Find	Whether a dowel or key is required to provide increased shear transfer capacityIf a dowel or key is required, size accordingly
Colution	.
Solution 1.	Determine factored shear load on wall due to soil load (i.e., 1.6H per Chapter 3, Table 3.1)
	V = 1,050 plf V _u = 1.6 (1,050 plf)= 1,680 plf
2.	Check friction resistance between the concrete footing and wall
	$V_{\text{friction}} = \mu N = \mu (\text{dead load per foot of wall})$
	$= (0.6)(1,704 \text{ plf}) = 1,022 \text{ plf} < V_u = 1,680 \text{ plf}$
	Therefore, a dowel or key is needed to secure the foundation wall to the footing.
3.	Determine a required dowel size and spacing (Section 72 and ACI-318•5.14)
	$A_{\rm vf} = V_{\rm u} / (\phi f_{\rm y} \mu)$
	$= (1,680 \text{ plf})/[(0.85)(60,000)(0.6)] = 0.05 \text{ in}^2 \text{ per foot of wall}$
	Try a No. 4 bar ($A_v = 0.20 \text{ in}^2$) and determine the required dowel spacing as follows:
	$A_{vf} = A_v/S$ 0.05 in ² /lf = (0.2 in ²)/S S = 48 inches
Conclu	sion
	This example problem demonstrates that for the given conditions a minimum of one No. 4 rebar at 48 inches on center is required to adequately restrict the wall from slipping. Alternatively, a key may be used or the base of the foundation wall may be laterally supported by the basement slab.

It should be noted that the factored shear load due to the soil lateral pressure is compared to the estimated friction resistance in Step 1 without factoring the friction resistance. There is no clear guideline in this matter of designer judgment.

EXAMPLE 7.11	Concrete Anchor
Given	 1/2-inch diameter anchor bolt at 4 feet on center with a 6 inch embedment depth in an 8-inch thick concrete wall The bolt is an ASTM A36 bolt with f_y = 36 ksi and the following design properties for ASD; refer to AISC Manual of Steel Construction (AISC,1989): F_t = 19,100 psi (allowable tensile stress) F_u = 58,000 psi (ultimate tensile stress) F_v = 10,000 psi (allowable shear stress) The specified concrete has f[*]_c = 3,000 psi The nominal design (unfactored) loading conditions are as follows: Shear load = 116 plf Uplift load = 285 plf Dead load = 180 plf
Find	Determine if the bolt and concrete are adequate for the given conditions.
Solution 1.	Check shear in bolt using appropriate ASD steel design specifications (AISC, 1989) and the ASD load combinations in Chapter 3.
2.	$\begin{array}{ll} f_v &= \frac{shear load}{bolt area} = \frac{116 plf (4 ft)}{(0.196 in^2)} = & 2,367 psi \\ F_v &= 10,000 psi \\ f_v &\leq F_v & OK \\ \end{array}$ Check tension in bolt due to uplift using appropriate ASD steel design
	specifications (AISC, 1989) and the appropriate ASD load combination in Chapter 3. $T = [(285 \text{ plf}) - 0.6 (180 \text{ plf})] (4 \text{ ft}) = 708 \text{ lb}$ $f_t = \frac{T}{A_{bolt}} = \frac{708 \text{ lb}}{0.196 \text{ in}^2} = 3,612 \text{ psi}$ $f_t \leq F_t$
3.	3,612 psi < 19,100 psf OK Check tension in concrete (anchorage capacity of concrete) using ACI-318•11.3 and the appropriate LRFD load combination in Chapter 3. Note that the assumed cone shear failure surface area, A _v , is approximated as the minimum of π (bolt embedment length) ² or π (wall thickness) ² . $V_u = T = [1.5 (285 \text{ plf}) - 0.9 (180 \text{ plf})] (4 \text{ ft}) = 1,062 \text{ lb}$ $A_v = \text{minimum of} \begin{cases} \pi (6 \text{ in})^2 = 113 \text{ in}^2 \\ \pi (8 \text{ in})^2 = 201 \text{ in}^2 \end{cases}$ $\phi V_c = \phi 4A_v \sqrt{f'_c} = (0.85)(4)(113 \text{ in}^2) \sqrt{3,000 \text{ psi}} = 21,044 \text{ lb}$

 $1,062 \text{ lb} \le 21,044 \text{ lb}$